Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Critical Care Medicine ; (12): 633-637, 2023.
Artigo em Chinês | WPRIM | ID: wpr-982645

RESUMO

OBJECTIVE@#To investigate whether hydrogen-rich water exerts a protective effect against cellular injury by affecting the level of autophagy after oxygen glucose deprivation/reoxygenation (OGD/R) in a mouse hippocampal neuronal cell line (HT22 cells).@*METHODS@#HT22 cells in logarithmic growth phase were cultured in vitro. Cell viability was detected by cell counting kit-8 (CCK-8) assay to find the optimal concentration of Na2S2O4. HT22 cells were divided into control group (NC group), OGD/R group (sugar-free medium+10 mmol/L Na2S2O4 treated for 90 minutes and then changed to normal medium for 4 hours) and hydrogen-rich water treatment group (HW group, sugar-free medium+10 mmol/L Na2S2O4 treated for 90 minutes and then changed to medium containing hydrogen-rich water for 4 hours). The morphology of HT22 cells was observed by inverted microscopy; cell activity was detected by CCK-8 method; cell ultrastructure was observed by transmission electron microscopy; the expression of microtubule-associated protein 1 light chain 3 (LC3) and Beclin-1 was detected by immunofluorescence; the protein expression of LC3II/I and Beclin-1, markers of cellular autophagy, was detected by Western blotting.@*RESULTS@#Inverted microscopy showed that compared with the NC group, the OGD/R group had poor cell status, swollen cytosol, visible cell lysis fragments and significantly lower cell activity [(49.1±2.7)% vs. (100.0±9.7)%, P < 0.01]; compared with the OGD/R group, the HW group had improved cell status and remarkably higher cell activity [(63.3±1.8)% vs. (49.1±2.7)%, P < 0.01]. Transmission electron microscopy showed that the neuronal nuclear membrane of cells in the OGD/R group was lysed and a higher number of autophagic lysosomes were visible compared with the NC group; compared with the OGD/R group, the neuronal damage of cells in the HW group was reduced and the number of autophagic lysosomes was notably decreased. The results of immunofluorescence assay showed that the expressions of LC3 and Beclin-1 were outstandingly enhanced in the OGD/R group compared with the NC group, and the expressions of LC3 and Beclin-1 were markedly weakened in the HW group compared with the OGD/R group. Western blotting assay showed that the expressions were prominently higher in both LC3II/I and Beclin-1 in the OGD/R group compared with the NC group (LC3II/I: 1.44±0.05 vs. 0.37±0.03, Beclin-1/β-actin: 1.00±0.02 vs. 0.64±0.01, both P < 0.01); compared with the OGD/R group, the protein expression of both LC3II/I and Beclin-1 in the HW group cells were notably lower (LC3II/I: 0.54±0.02 vs. 1.44±0.05, Beclin-1/β-actin: 0.83±0.07 vs. 1.00±0.02, both P < 0.01).@*CONCLUSIONS@#Hydrogen-rich water has a significant protective effect on OGD/R-causing HT22 cell injury, and the mechanism may be related to the inhibition of autophagy.


Assuntos
Camundongos , Animais , Oxigênio/metabolismo , Proteína Beclina-1/farmacologia , Glucose/metabolismo , Actinas , Sincalida , Autofagia/fisiologia , Hidrogênio/farmacologia , Traumatismo por Reperfusão , Apoptose
2.
Acta cir. bras ; 36(8): e360804, 2021. graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1339007

RESUMO

ABSTRACT Purpose: Subarachnoid hemorrhage (SAH) is a common complication of cerebral vascular disease. Hydrogen has been reported to alleviate early brain injury (EBI) through oxidative stress injury, reactive oxygen species (ROS), and autophagy. Autophagy is a programmed cell death mechanism that plays a vital role in neuronal cell death after SAH. However, the precise role of autophagy in hydrogen-mediated neuroprotection following SAH has not been confirmed. Methods: In the present study, the objective was to investigate the neuroprotective effects and potential molecular mechanisms of hydrogen-rich saline in SAH-induced EBI by regulating neural autophagy in the C57BL/6 mice model. Mortality, neurological score, brain water content, ROS, malondialdehyde (MDA), and neuronal death were evaluated. Results: The results show that hydrogen-rich saline treatment markedly increased the survival rate and neurological score, increased neuron survival, downregulated the autophagy protein expression of Beclin-1 and LC3, and endoplasmic reticulum (ER) stress. That indicates that hydrogen-rich saline-mediated inhibition of autophagy and ER stress ameliorate neuronal death after SAH. The neuroprotective capacity of hydrogen-rich saline is partly dependent on the ROS/Nrf2/heme oxygenase-1 (HO-1) signaling pathway. Conclusions: The results of this study demonstrate that hydrogen-rich saline improves neurological outcomes in mice and reduces neuronal death by protecting against neural autophagy and ER stress.


Assuntos
Animais , Camundongos , Ratos , Hemorragia Subaracnóidea/tratamento farmacológico , Lesões Encefálicas , Fármacos Neuroprotetores/farmacologia , Autofagia , Encéfalo , Ratos Sprague-Dawley , Apoptose , Estresse Oxidativo , Hidrogênio/farmacologia , Camundongos Endogâmicos C57BL
3.
West Indian med. j ; 59(2): 122-124, Mar. 2010.
Artigo em Inglês | LILACS | ID: lil-672585

RESUMO

Most ionizing radiation-induced damage is caused by radical oxygen species (ROS). Some radioprotectors, such as amifostine, exert radioprotective effects by scavenging radical oxygen species. Recent studies show that hydrogen (H2) has antioxidant activities that protect the brain and intestine against ischaemia-reperfusion injury and stroke by selectively reducing hydroxyl and peroxynitrite radicals. However, it is seldom regarded as a radioprotective agent. In like manner, we hypothesize that hydrogen may be an effective, specific and novel radioprotective agent. But H2 is explosive, while hydrogen-rich solution (solution such as physiological saline saturated with molecular hydrogen) is safer.


La mayor parte de los efectos dañinos inducidos por la radiación ionizante, son causados por especies radicales de oxígeno (ROS). Algunos radioprotectores, tales como la amifostina, ejercen efectos radioprotectores mediante el rescate de especies radicales de oxígeno. Estudios recientes muestran que el hidrógeno (H2) posee una actividad antioxidante que protege el cerebro y el intestino contra las lesiones por repercusión isquémica y accidente cerebrovascular, mediante la reducción selectiva de radicales de hidroxilo y peroxinitrito. Sin embargo, raramente se le considera como un agente radioprotector. De manera similar, planteamos la hipótesis de que el hidrógeno puede ser un agente radioprotector efectivo, específico y novedoso. Pero el H2 es explosivo, mientras que la solución rica en hidrógeno (como es el caso del suero fisiológico saturado con hidrógeno molecular) es más segura.


Assuntos
Humanos , Antioxidantes/farmacologia , Hidrogênio/farmacologia , Protetores contra Radiação/farmacologia
4.
Braz. j. med. biol. res ; 38(8): 1185-1193, Aug. 2005. ilus
Artigo em Inglês | LILACS | ID: lil-405519

RESUMO

COSY proton nuclear magnetic resonance was used to measure the exchange rates of amide protons of hen egg white lysozyme (HEWL) in the pressure-assisted cold-denatured state and in the heat-denatured state. After dissolving lysozyme in deuterium oxide buffer, labile protons exchange for deuterons in such a way that exposed protons are substituted rapidly, whereas "protected" protons within structured parts of the protein are substituted slowly. The exchange rates k obs were determined for HEWL under heat treatment (80°C) and under high pressure conditions at low temperature (3.75 kbar, -13°C). Moreover, the influence of co-solvents (sorbitol, urea) on the exchange rate was examined under pressure-assisted cold denaturation conditions, and the corresponding protection factors, P, were determined. The exchange kinetics upon heat treatment was found to be a two-step process with initial slow exchange followed by a fast one, showing residual protection in the slow-exchange state and P-factors in the random-coil-like range for the final temperature-denatured state. Addition of sorbitol (500 mM) led to an increase of P-factors for the pressure-assisted cold denatured state, but not for the heat-denatured state. The presence of 2 M urea resulted in a drastic decrease of the P-factors of the pressure-assisted cold denatured state. For both types of co-solvents, the effect they exert appears to be cooperative, i.e., no particular regions within the protein can be identified with significantly diverse changes of P-factors.


Assuntos
Animais , Clara de Ovo , Pressão Hidrostática , Muramidase/efeitos dos fármacos , Solventes/farmacologia , Sorbitol/farmacologia , Galinhas , Temperatura Baixa , Temperatura Alta , Hidrogênio/farmacologia , Imageamento por Ressonância Magnética/métodos , Muramidase/química , Desnaturação Proteica/efeitos dos fármacos , Ureia/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA